Comparison of the Numerical Solutions Obtained by Adomian Decomposition Method and Collocation Method of a Class of Weakly Singular Volterra Integral Equation
نویسنده
چکیده
In this paper, an Adomian decomposition method using Chebyshev orthogonal polynomials is proposed to solve a well-known class of weakly singular Volterra integral equations. Comparison with the collocation method using polynomial spline approximation with Legendre Radau points reveals that the Adomian decomposition method using Chebyshev orthogonal polynomials is of high accuracy and reduces the size of computational work. AMS classification: 65R20 • 65P99 • 65T99
منابع مشابه
Numerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method
In this paper, a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method. In this method, a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution. Error analysis of this method is also ...
متن کاملA simple algorithm for solving the Volterra integral equation featuring a weakly singular kernel
There are many methods for numerical solutions of integral equations. In various branches of science and engineering, chemistry and biology, and physics applications integral equation is provided by many other authors. In this paper, a simple numerical method using a fuzzy, for the numerical solution of the integral equation with the weak singular kernel is provided. Finally, by providing three...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملConvergence of product integration method applied for numerical solution of linear weakly singular Volterra systems
We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کامل